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DIGITAL SPECTRAL ANALYSIS 

by 
Anthony J. Villasenor 

Goddavd Space Flight Centev 

INTRODUCTION 

Among the functions of the Test and Evaluation program at Goddard Space Flight Center a r e  
the following : 

1. To evaluate the structural properties of spacecraft and spacecraft components by using 
spectral statistical analysis techniques to analyze vibration test data. 

2. To simulate the spacecraft's solar environment as accurately as possible by using radia- 
tion sources with spectra that are matched with the true solar spectrum as determined by 
interferometric and spectroscopic techniques. 

Test  data from these two areas, structures and solar simulation, a r e  sent to a digital computer 
facility for spectral analysis. It was natural, therefore, that the requirements from these a reas  
led to this investigation of methods for efficient spectral analysis on a digital computer. 

This paper presents some mathematical considerations of spectral analysis and some FORTRAN 
computer programs that use the Fast Fourier Transform algorithm of Cooley and Tukey. These 
programs compute Fourier amplitude and phase spectra, cross-power spectra, auto- and cross- 
correlation, and filtered spectra, as well as some other frequency domain functions. 

SAMPLING CONSIDERATIONS 

Let f ( t )  be a continuous function of t . The first step in analyzing f ( t )  by digital computer 
is to sample it and obtain a finite set of discrete points Xi ( i = 1, 2, 3 . . . , N ), which will  repre- 
sent the function f ( t )  in the computer. The process of sampling revolves around the Sampling 
Theorem (Reference l), which states that the rate of sampling should be at least twice the maxi- 
mum frequency contained in the data. Twice the maximum frequency is actually a bare minimum, 
and experience has shown that a sampling rate  of five times the maximum frequency is usually 
adequate for  most applications, where the value of the maximum frequency is not precisely known. 
Insufficiently sampled signals produce spectra containing"a1imed" frequencies. For example, 
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Figure 1-Sinusoid of 450 Hertz sampled 512 times 
per second. 

Figure 1 depicts the Fourier amplitude spec- 
trum of the curve 

f ( t )  = s i n ( 2 7 r 4 5 O t l 5 1 2 ) .  

The spike occurs at f = 62 Hertz in the 
spectrum. The Aliasing occurs because 
the sampling rate of 512 Hertz was not enough 
to  detect the true 450-Hertz signal and in- 
stead treated it as a 62-Hertz signal. We 
should have used a rate at least 2 x 450 or 
900 samples per second. The rate of 512 
samples per second gives rise to a maximum 
resolvable (cutoff) frequency f c  of 256 Hertz. 
The particular value of 62 comes from f = 

2 f  - 450 = 512 - 450 = 62. This relation is due to the fact that the amplitude of any frequency f in 
a signal sampled at 2 f c  samples per second equals the amplitude of the aliased frequency 2Nfc i f , 
where N is the number of points in the digitized sample. Thus for a time t = f c / 2  

cos(271 f t )  = c o s  

In other words, the Fourier coefficient of the frequency f is the same as the Fourier coefficient of 
the frequency 2 N  f c  f f for the sampling rate of 2 f c  samples per second. 

DIGITAL SPECTRAL FUNCTIONS 

Having sampled the function f ( t )  , we can perform various general mathematical operations 
on the data. 

The Fouvier Amplitude Spectmcm describes the frequency content of the data in the form of 
complex amplitude versus frequency. The term "frequency" may be misleading because it refers  
not to frequencies of our original function f ( t )  but rather to the number of times a particular 
sinusoid occurs within our finite sampled data. In fact, when working with a computer we are 
dealing with a Fourier Series expansion around the data even though we intend it to be a Fourier 
Integral expansion of f ( t )  . 

The amplitude is given by 
1 %  + i I k  I ,  

where 
N 

- 2 ~ r i k (  j -1 )     ti^,=' N Exj e 

j = l  
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The Fourier Phase Spectrum describes the phase content of our data in the form of phase 
angle (0 to 360 degrees or  -180 to +180 degrees) versus frequency. The phase normally indicates 
changes of state of the f ( t )  generator. In the case of interferometer data, an abrupt change in 
phase means that the light source has changed its temperature relative to the detector. In vibra- 
tion data, an abrupt phase change indicates a resonance. The phase is computed as 

Bk = a r c  t a n  (Ik/%) 

The Power Spectrum is a description of the relative power of f ( t )  as a function of frequency. 
The Power Spectrum P(W) is the square of the Fourier Amplitude Spectrum, 

Pk = + I,' = (% + i I~)(% - i Ik) 

(Reference 2). The adjective "power" comes from an electrical analogy. The total energy E of a 
circuit is given by 

where P is the power of the circuit in watts. But P = i 2 R  , s o  that 

i 2  R d  t .  

If we set  R to be a unit resistance, and the current i to be a time-varying function x ( t )  , then 
by Parseval's equality, 

where F(w) is the Fourier amplitude spectrum of the current x ( t ) .  The quantity lF(w)I2 is thus 
called the power spectral density or the power spectrum. 

When x ( t )  is a finite, discrete function sampled at time intervals d t ,  we have a slightly d i f -  
ferent mathematical formulation. In this case, we can speak of the average power Pa over a finite 
time interval T of the current x ( t )  . The formulation is 
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Pa = E/T = (1/T) x( t )2  d t .  

If N samples are taken of the signal X( t ) ,  then T = Ndt and 

We can now cite Parseval's equality, which holds that 

Substituting this in the above, 

Hence the average power spectral density is 14,12. 

The power spectrum is used, for example, in acoustics to determine the system gain factor 
by finding the ratio of the output-power to the input-power spectrum. The energy or total power 
is also of frequent interest. 

The Auto-covvelation function describes the degree of interaction that a function has with itself 
at various intervals along the time o r  distance axis. Auto-correlation for finite, discrete data is 
presented in the form of correlation coefficient versus lag number. The correlation coefficient 
at any lag varies from 1, if  the function is exactly duplicated at this lag, to zero, if  the function is 
completely uncorrelated with itself at  this lag, and to -1 if the function cancels itself out a t  this 
lag. For example, any two points of a straight line a r e  always exactly identical, hence the auto- 
correlation is everywhere 1. A sinusoid is in phase with itself once every cycle, and 180 degrees 
out of phase once every cycle, so the auto-correlation is a cosine curve with amplitude 1. Figure 
2 shows examples of auto-correlations and power spectra. 
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For a finite discrete data set xi (i = 1, 
2, 3, . . . , N ) ,  sampled at equispaced inter- 
vals, the auto-correlation is computed as a 
function of rtlagrt number. For lag = 0, the 
data "comb" of N points is multiplied by it- 
self; for lag= 1, the data comb is shifted over 
one point and N - 1 multiplications are per- 
formed; for lag = 2, the comb is shifted 
again for N - 2 multiplications. The process 
continues for as many lags as desired, usually 
up to 10 percent of N . 

The auto-correlation function for finite 
discrete data is given by 

N-L 
1 1  R(L) = - - 

R ( 0 )  N-L X j  X j + L ,  
j = 1  

A STRAIGHT 
LINE 

S I N E  CURVE 

NHlTE NOISE 

AUTO-CORRELATION 

1-7 L A G  

M L A G  

11 L A G  

POWER SPECTRUM 

11 0 FREQUENCY 

f 0  ill 
1d FREQUENCY 

where L = lag number. Note the normalizing 
Figure 2-Examples of  autocorrelation and power 

spectrum functions. 

factor 1 / R  (0) without which this would be called an auto-covariance function. The background in 
statistics - variance, correlation coefficient - is plain. In fact, R ( 0 )  is the sample estimate of 
the true mean-square value in the data, and is related to the sample variance s 2  by R ( 0 )  = 

[( N - 1 ) / N l ]  s2  (Reference 1). 

An important relationship exists between the auto-correlation function R (L) and the power 
spectral density P (w): they are integral transform pairs. That is, 

R(L) = P (w) eZniw dw, 

and 

P(w) = 1: R (L) e-2niL dL.  

Proof of this relationship is found in the literature under the heading "Wiener-Khintchine 
Theorem" (Reference 2). This relationship is important because the usual procedure for digitally 
computing power spectra is to compute first the autocovariance and then transform it to the fre- 
quency domain to obtain a first estimate of the power spectrum. The result is only an approximation 
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because the auto-covariance was computed for a finite number of lags, whereas the true 
auto-covariance is an infinite function. 

The Cross-correlation indicates the degree of relationship between two data samples in the 
form of correlation coefficient versus lag number. Again, complete correlation is 1, complete 
uncorrelation is 0, and anti-correlation is -1. Cross-correlation differs from auto-correlation, 
being defined as an imaginary quantity. The first step in this definition is to form Rxy ( L )  and 
R,, (L),.where 

L = lag number, 

Then the even and odd parts of the cross-correlation function a r e  given by 

The Cross Spectral Density describes the frequency dependence between two signals. If two 
signals a r e  mutually independent and uncorrelated, the cross-spectrum is zero, but if  they a r e  
mutually dependent, the cross-spectrum is not zero and may indicate a frequency resonance for 
the device connecting the two signals. The cross-spectrum Sxy of two signals x ( t )  and y(t) is a 
complex number with a r ea l  part (the co-spectrum) and an imaginary part  (the quadrature spectrum) 
The co-spectrum Cxy depicts the in-phase relationship of two signals, while the quadrature spec- 
trum Qxy depicts the out-of-phase relationship. The co-spectrum is traditionally computed as a 
cosine transform of the even part of a cross-correlation, and the quadrature spectrum as a sine 
transform of the odd part. 
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CROSS POWER SPECTRUM: Sxy = Cxy - i Q x y t  

where the cross-correlation is E, + i Q,. However, it is also possible to first compute the 
cross-spectral density of two signals by direct Fourier analysis, obtain Fx(w) and FY(w), then 
combine these two series to get the cross-spectral density 

where Fy(W) denotes the complex conjugate of F ~ ( ~ )  (Reference 3). Then, by applying the Wiener- 
Khintchine theorem, we immediately get the cross-correlation function R, as the inverse trans- 
form of S,. 

F A S T  FOURIER TRANSFORM ALGORITHM 

Since these spectral functions involve Fourier analysis computations, any algorithm that 
offers an efficient means of computing spectra on a digital computer is much to be desired. There 
a r e  several sources of such algorithms in the literature. Two of these appear in a book (Reference 
3). One algorithm by Goertzel makes a complex Fourier analysis of r ea l  data, using a simple 
matrix manipulation for obtaining sines and cosines. The other algorithm, by Southworth, first 
computes the auto-correlation for some percentage of the data, then performs a cosine Fourier 
transform of the result in order to obtain the power spectrum. This is the method proposed by 
Blackman and Tukey (Reference 4). 

Both of these methods have drawbacks. Goertzel's program is exceptionally efficient, but 
still consumes too much computer time. Southworth's program loses phase information and 
can compute only a fraction of the total frequency content of a given data set. 

More recently, James Cooley and John Tukey (Reference 5) introduced an algorithm that is 
hundreds of times faster than either of these methods. Called the Fast Fourier Transform, this 
algorithm analyzes or synthesizes a complex a r r ay  of points whose size is (or can be built up 
with zeros to give) a power of 2. That is, their algorithm is set up to analyze 2" points, where 
m is any positive integer. If the data set contains 1000 points, for example, it should be extended 
to 1024 = 21° points by adding 24 zero-valued points. The Cooley-Tukey algorithm is based on the 
relationship existing between two analyses of N points each and one analysis of 2 N  points. That is, 
if  we desire a Fourier analysis of the 2 N  points Xj ( j = 1, 2, 3, . . . , 2~ ), it is faster to make one 
analysis of the odd-index points (of which there are N )  and another of the even-indexed points, and 
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then merge the two results to obtain a single analysis covering all 2 N  points. Since this relation 
holds between one 2 N  ser ies  and two N-point series,  then certainly each of the N-points analyses 
can in turn be obtained by pairs of N/2-p0int analyses, and so on. This successive halving accounts 
fo r  the base 2. Cooley and Tukey have estimated that this method if  N / l o g 2 N  times faster than con- 
ventional methods. Note that the e r r o r s  associated with digital computation are also reduced by 
this factor of N / l o g 2 N .  

Thus, the plan in the Fast Fourier Transform is to generate a 2N -Point analysis from two N- 

point analyses. This procedure is straightforward. Given 2 N  complex data points X j  ( j  = 1, 2, 
3 . . . , 2 N ) ,  we can split these points into an "odd" array indexed 1 , 3 , 5 .  . . , 2 N  - 1 ,  and an 
"even"arrayindexed2,4,6. . . , 2 ~ .  Let sequences of A k ' s  and A A k ' s  represent the spectra 
of these arrays, respectively. Then, if we consider separately the odd and even indexed points 
in the expression for the "total" representation, by substituting 21 - 1 and 2 j  in place of j , we 
will eventuallyendwith a relationship betweenthe A k ' s ,  the kAk's andall the Ckls which are the 
Fourier coefficients of the 2 N  points. The representations would be as follows: 

Odd indexed points : 

Even indexed points 

N 

where j = 1, 2, 3, . . . , N .  In a 2N-point analysis, the ser ies  would be 

(The j and k indices range from 1 to N rather than the usual 0 to N - 1 to simplify programming 
notation.) If now we consider the even and odd indexed points in this last summation, 
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Odd: 

Even: 

= ck e2ni(j~l)(kll)/N . eZni(k-1)/2N 
k = l  

Replace the index k by k' = k - N  in the second half of each sum above (Le. for k = N + 1 to k = 2 N ) .  

Odd: 

e2ni( j-l)(k'-l)/N, 
- 
2 ck e2ni(j-l)(k-l)'N + 

Even: Xzj = 2% eZni(j-l)(k-l;/N e2ni(k-1)/2N 

k=l 

e2 n i ( j - 1) (k - 1 )/N .2 TT i (N+k ' - 1) /ZN 
$ 

9 
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In these sums, k and k' are independent indices, s o  we can collect t e rms  to get 

Odd: 

Even: 2 TT i ( j - 1 ) ( k  - 1 )  /N e2 n i ( k -  l) . 'ZN 

Comparing this result with the definition of A, and AAk, we have 

Solving this system of equations finally gives 

where k = 1, 2, 3 . . . , N .  

- 2 n i ( k  - 1 ) / 2 N  1 
%+N = ) ?  
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These equations show that it takes N complex multiplications to go from the two N-point analyses 
to a 2N-point analysis. To find the total time needed to make an N-point analysis by this method, 
let M, equal the number of multiplications needed for each of our N-point analyses. Let M2, equal 
the total number of multiplications needed to end with the 2N-point analysis. Then obviously 

M2, = 2MN t N 

Since N = 2m, m successive doublings would give us the required N-point analysis - that is to say, 
for the above iterative equation the initial condition is No = 1. Solving the equation 

(i = 0, 1, 2 . . . , m -  1) we get M N  = ( N / 2 )  l o g 2 N .  To compensate for various computer overhead 
operations, this can be overestimated as  log^^ operations, as opposed to N2 operations by 
Goertzel's method. Hence the saving in computer time using Cooley's method is N/ log2N times 
the time by the old methods. 

For a Control Data Corporation (CDC) 3100 computer with software floating point, Goertzel's 
algorithm took 45 minutes to  Fourier-analyze 2048 points. It took Cooley's method 18.3 seconds - 
an enormous saving. 
comparisons of execution times. 

It makes possible real-time digital spectral analysis. See Table 1 for 

Table 1 

Table of Comparison Times in Seconds 
(CDC 3100 with Software Floating Point) 

Goertzel 
Harmon 
Fourier 
Aliasing 
Double 

256 

42.9 

1.7 
2.7 

COMPUTER PROGRAMS 

Subroutine FOURIER 

N 
I 

512 

169.8 

3.8 

5.5 

size of arrz 

1024 

675.7 
14.0 

8.4 
11.5 
18.9 

2 048 

2699.5 

18.3 
24.2 

4096 

31.9 

62.8 
- 

8192 ___ 

114.4 

The original subroutine HARMON written by Dr. Cooley to carry out these operations is some- 
what limited because it requires a complex data array as input. Most numerical data are real, not 
complex. To solve the majority of problems, the subroutine FOURIER was written to take as 
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input a real N-point array and to return (N /2) + 1 complex amplitudes. Subroutine FOURIER 
accomplishes this by the following procedure: First, it s tores  the odd-indexed points of the given 
N-point array in the real par ts  of N/2 complex numbers, and the even-indexed points in the 
imaginary parts. tNext, it makes a call to subroutine HARMON with N/2 complex points as input. 
Finally, it extracts the odd and even pairs of amplitudes from the result and merges these to form 
the (N/2) + 1 complex amplitudes of the original N points. The number of complex amplitudes is 
(N/2) + 1 because the Fourier coefficients for real data satisfy: 

4, =h-kt2 (k = 1, 2, 3 . .  . N, N t 1 ) .  

That is, the real and imaginary parts are respectively symmetric and antisymmetric about the 
element k = ( N / 2 )  + 1. This relation yields the following identities: 

Real part  of A, = average of input data points 
Imaginary part of A, = 0 

A, = A, - ,(periodicity). 

Thus, for real  analysis we need only be concerned with the ( N / 2 )  + 1 complex amplitudes A,, 

A,, . . . , A,,, 
straightforward. Given a complex array Xk = X z  + i X z  , where the superscript represent the odd 
and even indexed r ea l  data points, respectively, we call HARMON to get the complex amplitudes 
C, (k = 1, 2, 3 . . . , N ) .  Thus any original complex point Xk has the se r i e s  representation 

Imaginary part of 2) + , - 0  - 

)+ . At this point, the procedure for accomplishing the real  analysis is 

At this point we can also introduce the Fourier coefficients Aj and AAj ( j  = 1, 2, 3 . . . , N )  repre- 
senting respectively, the odd- and even-indexed ser ies  coefficients. We can write 

j =1 

and 

N 
2 ~i i ( j - 1) (k - 1)/N x; = C AA] e 

, =1 
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Substituting Equations 2 and 3 in Equation 1 gives 

Taking the complex conjugate in Equation 1 gives 

where in the second summation the index j has been replaced by 8 = N - j + 2. That is, starting 
with 

N 
e-2ni ' ( j - l ) ( k - l ) / N  

j = 1  

and letting j = N - 4 + 2, immediately gives the following identities: 

2 2  

cj = C N - x t 2  

- 2 n i ( j - 1 ) (  k - 1 ) / N  - 271 i ( N  -4 t 1)( k -  1 )  I N  ~ e Z  71 i ( 4  - 1)( k -  1 )  'N 
e = e  

j = 1 b e c o m e s  4 = N t 1 

j = N b e c o m e s  4 = 2 

so that (C) is demonstrated. 
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Combining Equation 1 and 4 gives 

Cj = Aj + i A A j  

Combining Equations 4 and 5 gives 

- s-. = A .  - i A A j  J + 2  1 

Thus, 

Now we have the odd and even amplitudes, which can be recombined to give 

1 
1 - - Z T ~ ( ~ - I ) / N  

% j + 2  = C. = -  (A. - A A .  e 
' 2 '  

which is the desired result. 

Subroutine ALIASING 

1, 
- 2 n  i (  j - l ) / N  - 1 (Aj - AAj e 

2 

Another routine written around the original Cooley program is subroutine ALIASING. Its 
purpose is to determine, from N given real  points, whether the sampling rate is sufficient. It also 
computes Parseval's formula to determine the magnitude of calculation e r r o r s  attributable to 
digital roundoff. The.routine returns with (N/2) + 1 complex amplitudes, just as if the routine 
FOURIER had been called instead. 

The method used in ALIASING i s  similar to the one in FOURLER: An N-point array is treated 
as an ( N  /a)-point complex array, which is Fourier-analyzed with HARMON. The resulting spectrum 
is split up into two spectra 4, and A% representing, respectively, the frequency components of the 
odd and even indexed points of the given array.  Each of these spectra represents a sampling 
density of N/2 points; that is, half the actual density. Then both the odd and the even spectra 
are merged to yield the desired final spectrum Ck. The % ' s  and A % ' s  represent the same sampling 
density at alternating points, so that their difference (between odd-indexed and even-indexed points) 
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should be zero for each k . If the sampling rate is sufficient, the differences between A, and C, 

and between AA, and c, will also be close to zero. In addition, all the octaves CN-, should be zero. 
If any or all of these quantities are larger than the difference between A, and AA, , then the sampling 
density is insufficient or, at best, questionable. 

The quantities 

Odd- even: 

Odd-both: 

Even-both: 

Octave : 

returned by subroutine ALIASING a r e  computed by the following formulas: 

A s  an example, suppose that we generate a unit sinusoid of 450 Hertz, and sample it at  1024 
points per second for 1 second. We know that all C ~ S  will be zero except c450 , which will equal 
1. A call to ALIASING will yield zero amplitudes for all A ' S  and A A ' s  except for k = 62, when both 
will equal 1. The frequency of 62 Hertz is the aliased frequency corresponding to 450 Hertz for 
a sampling density of 512 points per-second. However, C,, will be zero, while C450 will be 1. This 
procedure would show the difference between the A ' S  and AA's  as zero, but obviously not zero for 
the other differences. In order to capture the 450-Hertz sinusoid, we would have to increase the 
sampling rate, say by a factor of 2. 

Parseval's theorem simply says that the norm of the input data array should be equal to the 
norm of the output amplitude array.  This is a property of linear transformations used in computer 
applications to determine the extent of e r r o r  resulting from digital truncation. The statement of 
Parseval's equality is 
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N N 

ALIASING deals with real data, however, so  that 

Also, the amplitude of all components but A, and A(N,,2) + 

a symmetric two-sided spectrum, but only positive frequencies are of interest. Hence Parseval's 
equality is computed as 

are doubled because the routine computes 

Subroutine DOUBLE 

It sometimes happens that the sampling rate yields too many points for a particular computer. 
A Control Data Corporation (CDC) 3100 with 16,000 words of memory and standard FORTRAN can 
handle at most 4096 points, using the Fast Fourier Transform. The routine called DOUBLE was  
written to double any computer's capacity for Fourier analysis; it requires three scratch tapes. 
The user puts his oversized array on tape, makes a call to DOUBLE, then reads in that same 
tape to get his complex amplitudes. The user of course does not read and write his oversized 
 p point array in a single command; instead, he must divide his array into four records of N / 4  
points each. DOUBLE does the same processing as FOURIER except for input/output (I/O) calls 
and increased capacity. It should be mentioned that the complex amplitude +N,2) + 

from DOUBLE. Also, if only frequency amplitudes are required and phase information is dis- 
carded, then the user can save 1/0 usage and computer time by modifying DOUBLE to return just 
the ~ / 2  amplitudes. 

is not returned 

Subroutine POWER 

Another subroutine power takes as input data two real  a r r ays  x and Y and returns in x with 
the cross-power spectrum 

,L 

Pxy (w) = 3 (X) :r (Y) 
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The power spectral density of a single array x may be computed by power as 

-L 

P,,(w) = 3 (X) 3(X) = ) 3 ( X )  I Z ,  

but this would not be as efficient as computing the squared modulus of the complex spectrum re-  
turned by FOURIER. 

Subroutine COVAR 

The routine COVAR uses CROSS to yield the cross-covariance of two given arrays.  The co- 
variance is computed as the inverse Fourier transform of the cross-power spectrum. COVAR 
first computes the cross-power spectrum by calling CROSS, then performs an inverse Fourier 
transform on this array to  get the cross-covariance. For input arrays X andY, the cross  covariance 
is returned in Y and the cross  power spectrum in X . To obtain the correlation function, normalize 
the covariance values by the "zero lag" value of the covariance - i.e., the value Y1. 

Subroutines HANNING and HAMMING 

The subroutine HANNING takes as input a real  array A of frequency amplitudes. The Hanning 
smoothing function is applied to the input, and the result is stored in array A ,  thereby replacing 
the original contents of A. The Hanning function is defined by 

A ' ( i )  = . S A ( i - 1 )  + A ( i )  t . S A ( i  + 1) 

The coefficients a r e  customarily given as (0.25, 0.5, 0.25), but we are dealing here with one-sided 
spectra so that a factor of 2 is involved. 

The subroutine HAMMING applys the Hamming smoothing function to a given real array A. It 
is defined by 

A; = 1.08 A, t 0.92 A*, 

% = 1.08 % t 0 .92  

A I  = 0.46 Ai-, t 1.08 Ai t 0.46 Ai+, 

(i = 2, 3, ... N - 1). 

Note that the factor 2 appears again in the coefficients, which are usually given as (0.23, 0.54, 0.23). 
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The usefulness of these little subroutines for analyzing data with discrete frequencies should 
not be underrated; they compensate for the finite discrete nature of Fourier analysis when per- 
formed on a digital computer. These simple digital filters perform two functions: they reduce 
the resolution of spectral lines, and they increase the accuracy of relative height of spectral lines. 
For continuous, smooth spectra, this is not too important, but spectra with sharp spectral lines can 
be grossly misinterpreted if these two functions are not performed. In spite of the reduction in 
resolution, some filter should be used in digital Fourier analysis. No filter actually corresponds 
to using a s i n  x/x filter, which has undesirable high sidelobes that can lead to gross e r r o r s  of com- 
puted results. 

AVERAGING FOR B E T T E R  R E S O L U T I O N  

Often, a sample size of N points does not adequately describe the frequency content of the data, 
probably twice as many points being needed. At this point it is often suggested that, rather than 
resample the data at a higher sampling rate, we should just perform linear interpolations between 
the given points to get the required point density - say, 2 N  points. The reply is that a linear 
interpolation - or rather, a linear transformation - adds no new information to the data, hence no 
new information to the spectrum. The proof is as follows: 

Consider the N-point ser ies  representation 

Suppose that we define a new sequence of points XXj located between the xj , such that 

XXj = aj  Xj + bj X j + l  

and such that the corresponding Fourier coefficients AA, a r e  represented by 

2 7  i ( j - 1 ) (  k -  1 ) / N  xx. J = LA%e 
k = l  

In order to get the A%'s in terms of the % I s ,  we set 
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2 vi ( j - 1 )  ( k -  1 ) / N  e Z n  i ( k  - 1 ) / N  

k = l  

Hence, 

or 

A 4 ,  = aj  4, + bj  4, e Z T i ( k - l ) "  

This equation can easily be made independent of j by assuming a uniform linear interpolation such 
that a = aj  and b = bj . Then we have 

Now if we merge these points xj and xxj , we form a 2~-point series xJ , such that our original 
points a r e  the odd indexed XJ and the linearly interpolated points are the even indexed X i  . Using 
the equalities obtained earlier for merging series, we get, for k = 1, 2, 3, . . . , N + 1. 
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Also, 

This shows that the new series, with alternating points being linearly interpolated values, is merely 
a modification of the old se r i e s  by a complex exponential whose period is 2N points. The old fre- 
quency components will be modified and no new ones will appear. This effect is easily seen if  we 
set a = b = 1/2, for then 

J e - 2 n i ( k - 1 ) / 2 N  e Z n i ( k - 1 ) / 2 N  
.~ 

2 2 

+:Fyvlf 
-1 

1 1/2N N 3/2N 

(a) CURVE f (t) 

1 1 /2N N 

(b) SPECTRUM (typical) 

= L 4 , ( 1  $ C O S  2n(k - 1.) 

2 2N 

and 

2n(k - 1)  1 - cos ~ 

2N 

( k = l , 2 , 3  . . . ,  
N +  1) 

The curve f ( t )  defined by 

for first h a l f  
o f  s p e c t r u m  

1 t c o s  
2N 

I /  
f o r  s e c o n d  h a l f  

2N o f  s p e c t r u m  

(k = 1, 2, 3 . . .  , N t  1) 

has the form shown in Figure 3(a). A typical 
spectrum of N points is shown in Figure 3(b). 
The result of linearly interpolating between 
points to get 2N points is shown in Figure 3(c). 3F (2 2N 1 N/2 N 

( c )  SPECTRUM WITH CURVE f (t) 

Figure 3-Effect of  averaging neighboring points 
i n  a data sample. 
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DIGITAL FILTERS 

When an infinite and continuous function h ( t )  is sampled for digital processing, the actual function 
considered by the computer is d ( t )  = g ( t ) h ( t )  , where g ( t )  is defined by 

g ( t )  = 2 8 ( t  - j t )  
j ,-M 

It equals 1 when t = j A t  and is otherwise zero. This finite sequence of N ,  N = 2M + 1, equispaced 
unit spikes, corresponding to N sampled points, is called a finite Dirac comb. Function g( t>  is a 
specimen of the so-called "lag windows" that modify h ( t )  at different intervals or time lags. 

When a Fourier transform is applied to d ( t ) ,  the result is the same as convolving the Fourier 
transforms of g ( t )  and h ( t ) .  That is, if G(w) and H(w)  a re  the Fourier transforms of g ( t )  and h( t ) ,  

respectively, then the Fourier transform of the product g ( t )  h ( t )  is the convolution G*H, defined as 

G"H(\v) - J-1 G(f) H(\v - f)df : H*G(w). 

To see this, we compute 

[I G(f) [ 1.1 h ( t )  f ) t  d t  df 1 
C(f) H(w - f)df. S'I 

Thus, instead of multiplying two functions before transformation, we could equivalently convolve 
their spectra represented by 

C ( w )  = J - I g ( t )  e - i " t d t  

21 
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and 

H(w) = [ h ( t )  e-iwt d t .  

The convolution @H(w) represents an estimate of the true frequency content H(f )  as seen through 
a spectral window of variable transmission C (  w - f ). This spectral window is referred to as a 
digital filter when applied to digital data; in that case, the discrete convolution takes the form 

which has the effect of spreading the "true" spectral amplitude H(n) by M weights on either side of 
n. The H(n) are called '?raw spectral estimates"; the G*H(w) are "refined (or smoothed) spectral 
estimates". In most cases C(w) has the form of a ( s i n  L)/L function, which has a maximum peak at 
L = 0 (equal to I) and an infinite number of relative maxima oscillating in sign. The peak at  L = 0 
is called the main lobe, and the relative maxima a r e  called side lobes. 

The choice of a particular digital filter is based on the following considerations: 

$ 0  o t h e r w i s e  

2. The main lobe of C(W) should be concentrated near L = 0 to reduce the resolution or band- 
width represented by a particular frequency at W. This means that g ( t )  should be flat with sharp 
cutoffs a t  tT, such as a square wave. 

3. The side lobes should be as small as possible to reduce the contribution of other frequen- 
cies at w - f to the final amplitude at w. This means that g ( t )  should be smooth and gradually 
trailing off the 0 at t = * T. 

The only way to satisfy all these requirements is to effect some sor t  of compromise deter- 
mined by experiment. 

The HAMMING and HANNING subroutines described earlier a r e  digital filters that smooth 
the spectrum and give discrete amplitudes a better relative representation at the cost of individual 
peak resolution. It would be worthwhile to see directly the relationship between lag windows and 
spectral windows for  the popular Hanning function. The Hanning lag window is defined as 
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2 T 

= o  

w 
n 
3 
!I 

D : 
5 
- Figure 4 is the graph of the function. 2 

z 
5 
Z 

To obtain the Fourier spectrum of g ( t )  , we 

compute 0 

TIME, t (sec) 

Figure 4-Hanning lag window function i n  
time domain. 

n t  cos- ( cos  277ft - i s i n  2 n f t )  d t  1 = $ l: ( c o s 2 n f t  - i  s i n  2 n f t ) d t  t - 

Thus the spectral form of the Hanning lag window is the sum of a central term at frequency f , and 
two other ( s i n  x )/x t e rms  displaced on either side of f by 1/2 T .  The difference 

1 ( I  , & ) -  (f-5) = - 

is the digital bandwidth of the filter. For a sample of N points, the bandwidth is 2 / ( N A  t), since 
N A t  = 2T. Figure 5 is the graph of C( f )  . Substituting C( f )  in the convolution formula, we have 

1 
2 

t -  

In the discrete case, a frequency f = f ,  represents the kth harmonic in a finite sample of length 
2T ,  so the f, can be expressed as f, = k / 2 T .  Hence if f = f, and4 = f @  we get 
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FREQUENCY (Hz) 

Figure 5-Hanning lag window function i n  
frequency domain. 

FREQUENCY (Hz) 

Figure 6-Dirac spectral window function. 

G * H ( f , )  = G * H  ( k  - ) - - JT ( k - i ) ( , i n d  
2T n4 2T -T 

Integrating by par ts  gives 

1 1 1 
2 4 4 

G*H(f,)  = - H ( f , )  + - H ( f k + l )  t - H ( f k - l )  

The coefficients a r e  the triplet (0.25, 0.5, 
0.25) usually given for the Hanning spectral 
window. If we are dealing with one-sided 
spectra (i.e., 0 5 f < X )  rather than two-sided 
spectra ( -CO < f < 03))  then these coefficients 
should be doubled. 

The spectral window corresponding to 
the finite Dirac comb is 

s i n  2nk 

nk 
N 
- 

Figure 6 is the graph of this function. The lobes a r e  not as small as in the Hanning window, and 
for that reason the latter is usually preferred. 

Further information on digital filters can be found in Reference 4. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, December 12 ,  1967 
125-23-02-13-5 1 
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Appendix A 

Subroutine HARMON 
SUBROUTINE HARMON(A9SsM, IFS , IFERR)  
D I M E N S I O N  A ( l ) * S ( l )  

M O D I F I E D  TO RUN ON CDC 3100. 
HARM, ONE-DIMENSIONAL B A S I C  FORTRAN VERSION. J.W.COOLEY HARM 001 

HARM 002 
HARM 008 

DOES E I T H E R  FOURIER SYNTHESIS,I.E.,COMPUTES COMPLEX FOURIER SERIESHARM 009 
G I V E N  A VECTOR OF N COMPLEX FOURIER A M P L I T U D E S t O R t  G I V E N  A VECTOR HARM 010 
OF COMPLEX DATA X DOES FOURIER A N A L Y S I S 9  COMPUTING AMPLITUDES. HARM 011 
A IS A COMPLEX VECTOR OF LENGTH N=2**M COMPLEX NOS. OR 2*N REAL 
NUMBERS. A I S  TO BE SET BY USER. 
M IS AN INTEGER O.LT.M.LE.13* SET BY USER. 
S I S  A VECTOR S ( J ) =  S I N ( 2 * P I * J / N P  1 ,  J=1,2,....sNP/4-lr 
COMPUTED BY PROGRAM. 
I F S  I S  A PARAMETER TO B E  SET BY USER AS FOLLOWS- 
I F S = O  TO SET NP=2**M AND SET UP S I N E  TABLE 5. 
I F S = 1  TO SET N=NP=2**M, SET UP S I N  TABLE, AND DO FOURIER 
SYNTHESIS .  REPLACING THE VECTOR A BY 

X ( J ) =  SUM OVER K = O v N - l  OF  A l K ) + E X P ( 2 * P I + I / N ) * * ( J * K ) ~  
J=O,N- l ,  WHERE I = S Q R T ( - l )  
THE X-S ARE STORED W I T H  RE X ( J )  I N  C E L L  2 * J + 1  
AND I M  X I J )  I N  C E L L  2 * J + 2  FOR J=O11,29...rN-l.  
THE A-S ARE STORED I N  THE SAME MANNER. 

I F S = - 1  TO SET N=NP=~**MISET UP S I N  T A B L E V  AND DO FOURIER 
ANALYSIS .  T A K I N G  THE I N P U T  VECTOR A AS X AND 
REPLACING I T  BY THE A S A T I S F Y I N G  THE ABOVE FOURIER SERIES.  
I F S = + 2  TO DO FOURIER S Y N T H E S I S  ONLY9 WITH A PRE-COMPUTED 5. 
I F S = - 2  TO DO FOURIER A N A L Y S I S  ONLY9 W I T H  A PRE-COMPUTED S. 
I F E R R  I S  SET BY PROGRAM TO- 
=O I F  NO ERROR DETECTED. 
=1 I F  M IS OUT OF RANGE.. OR9 WHEN I F S = + 2 9 - 2 9  THE 
PRE-COMPUTED S TABLE I S  NOT LARGE ENOUGH. 
=-I WHEN I F S  = + l r - l ,  MEANS ONE IS RECOMPUTING S TABLE 
UNNECESSARILY.  

NOTE- AS STATED ABOVE, THE MAXIMUM VALUE OF M FOR T H I S  PROGRAM 
ON THE I B M  7 0 9 4  I S  13.  ON 3 6 0  MACHINES H A V I N G  GREATER STORAGE 
CAPACITY,  ONE SHOULD CHANGE T H I S  L I M I T  B y  REPLACING 1 3  I N  
STATEMENT 3 BELOW BY LOG2 N. WHERE N 15 THE MAX. NO. OF 
COMPLEX NUMBERS ONE CAN STORE I N  HIGH-SPEED CORE. 

ALSO ADD MORE DO STATEMENTS TO THE B I N A R Y  SORT ROUTINE 

FOR THE K-S. 

D I M E N S I O N  K 1 1 2 )  

I F  THE C A P A C I T Y  OF HARM I S  TO BE INCREASED, ONE MUST 

FOLLOWING STATEMENT 2 4  AND CHANGE THE EQUIVALENCE STATEMENTS 

EQUIVALENCE l K ~ ~ 1 ) ~ K ~ I ~ ~ K ~ 1 O l ~ K 2 ~ ~ ~ K ~ 9 ~ . K 3 ~ , ( K ~ 8 ~ ~ K 4 ~ ~ ~ K l 7 l ~ K 5 ~  
EQUIVALENCE ( K ( 6 )  , K 6 ) r ( K ( 5 ) , K 7 ) , ( h ( 4 ) , K 8 ) , ( K ( 3 )  , K 9 ) , I K ( Z ) r K 1 0 )  
EQUIVALENCE l K ( 1 )  r K 1 1 ) 9 ( K ( l I  r N 2 )  
I F (  M 12  92 9 3  
I F I M - 1 1 )  5 9 5 9 2  
I F E R R = l  
RETURN 
I FERR=O 
N=2**M 
I F (  I A B S ( 1 F S )  - 1 1 2 0 0 . 2 0 0 9 1 0  
WE ARE DOING TRANSFORM ONLY. SEE I F  PRE-COMPUTED 
5 TABLE IS S U F F I C I E N T L Y  LARGE 
I F (  N-NP ) 2 0 , 2 0 9 1 2  

HARM 012 
HARM 013 
HARM 014 
HARM 0 1 5  
HARM 016 
HARM 017 
HARM 0 1 8  
HARM 019 
HARM 020 
HARM 0 2 1  
HARM 0 2 2  
HARM 0 2 3  
HARM 0 2 4  
HARM 025 
HARM 0 2 6  
HARM 0 2 7  
HARM 028 
HARM 0 2 9  
HARM 0 3 0  
HARM 031 
HARM 032 
HARM 0 3 3  
HARM 0 3 4  
HARM 0 3 5  
HARM 0 3 6  
HARM 037 
HARM 038 
HARM 0 3 9  
HARM 040 
HARM 041 
HARM 0 4 2  
HARM 0 4 3  
HARM 0 4 4  
HARM 0 4 5  
HARM 046 
HARM 047 
HARM 0 4 8  
HARM 049 

HARM 0 5 5  

HARM 057 
HARM 0 5 8  
HARM 0 5 9  

HARM 061 
HARM 0 6 2  
HARM 063 
HARM 064 

HARM 060 
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12 IFERR=l 
GO TO 2 0 0  

C SCRAMBLE A9 BY SANDE-S METHOD 
2 0  K(1)=2*N 

22 K(L)=K(L-1)/2 
DO 22 L=29M 

DO 24 L=M*10 
24 K(L+1)=2 

C NOTE EQUIVALENCE OF KL AND K(14-L) 
C BINARY SORT- 

I J=2 
J1=2 

25 DO 30 JZ=Jl,KZ,Kl 
DO 30 J3=J29K3rK2 
DO 30 J4=J3*K4,K3 
DO 30 J5=J4,K59K4 
DO 30 J6=J5rK6iK5 
DO 30 J7=J6rKl.K6 
DO 30 J8=J7rK8.K7 
DO 30 J9zJ89K9rK8 
DO 30 JlO=J99KlO,K9 
DO 30 JI=JlO,Kll9KlO 
IF(IJ-J1)28,30*30 

A(IJ-l)=A(JI-l) 
A( JI-1) =T 
T=A(IJ) 
A I I J =A I JI ) 
A(JIl=T 

30 IJ=IJ+Z 
Jl=J1+2 

28 T=A(IJ-l 1 

IF(K;-J1)31,25125 
31 IF(IFS)32,2936 

C DOING FOURIER ANALYSISISO DIV. BY N AND CONJUGATE. 
32 FN = FLOAT(N1 

DO 34 I=l,N 
A(2*1-11 = A(Z*I-l)/FN 

34 A(Z*I)=-A(Z*I)/FN 
C SPECIAL CASE- L=l 

36 DO 40 I=19N*2 
T = A(2*1-1) 
A(2*1-1) =T + A(Z*I+l) 
A(2*1+1)=T-A(2*1+11 
T=A(Z*I 
A(2*1) = T + A(2*1+2) 

IF(M-11 291 950 
40 A(2*1+2)= T - A(2*1+2) 

C SET FOR L=2 
50 LEXP1=2 

C LEXPl=Z**(L-l) 
LEXP=8 

C LEXP=2**(L+l) 
NPL= Z**MT 

C NPL = NP* 2**-L 
DO 130 L=29M 

C SPECIAL CASE- J=O 
DO 80 I=Z,NZ9LEXP 
Il=I + LEXPl 
I2=11+ LEXPl 
I3 =IZ+LEXPl 
T=A( 1-1 1 
AII-1) = T +A(I2-1) 
A(I2-1) = T-A(I2-1) 
T =A(I) 
AI11 = T+A(I2) 
A(I2) = T-A(I2) 
TI -AI131 
TI = A(I3-1) 
A(I3-1) = A(I1-1) - T 
A(I3 1 = A(I1 ) - TI 
A(I1-1) = A(I1-1) +T 

HARM 065 
HARM 066 
HARM 061 
HARM 068 
HARM 069 
HARM 010 

HARM 072 
HARM 073 
HARM 074 
HARM 075 

HARM 078 
HARM 079 
HARM 080 
HARM 081 
HARM 082 
HARM 083 
HARM 084 
HARM 085 

HARM 089 
HARM 090 
HARM 091 
HARM 092 
HARM 093 
HARM 094 
HARM 095 
HARM 096 

HARM 097 
HARM 098 

HARM 100 
HARM 101 
HARM 102 
HARM 103 
HARM 104 
HARM 105 
HARM 106 
HARM 107 
HARM 108 
HARM 109 
HARM 110 
HARM 111 
HARM 112 
HARM 113 
HARM 114 
HARM 115 
HARM 116 
HARM 111 
HARM 118 

HARM 120 
HARM 121 
HARM 122 
HARM 123 
HARM 124 
HARM 125 
HARM 126 
HARM 127 
HARM 128 
HARM 129 
HARM 130 
HARM 131 
HARM 132 
HARM 133 
HARM 134 
HARM 135 
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00 A ( I 1 )  = A ( I 1  ) + T I  

90 KLAST=N2-LEXP 
I F ( L - 2 )  1 2 0 * 1 2 0 * 9 0  

J J = N P L  
DO 110 J = 4 * L E X P l r 2  
N P J J z N T - J J  
UR=S(NPJJ) 
U I = S (  JJ) 
I L A S T = J + K L A S T  
DO 100 I =  J ~ I L A S T I L E X P  
I l = I + L E X P l  
1 2 = 1 1 + L E X P l  
I 3 = 1 2 + L E X P 1  
T = A ( I 2 - 1 ) * U R - A ( 1 2 ) * U I  
T I = A ( I Z - l ) * U I + A ( I 2 ) * U R  
A ( I 2 - l ) = A ( I - l ) - T  
A ( I 2  ) = A ( I  ) - T I  
A ( 1 - 1 )  = A ( I - l ) + T  
A (  I) = A (  I ) + T I  
T = - A ( I 3 - 1 ) * U I - A ( 1 3 ) * U R  
T I = A ( 1 3 - l ) * U R - A ( 1 3 ) * U I  
A ( I 3 - l ) = A l I l - l ) - T  
A ( I 3 )  = A ( I 1  ) - T I  
A ~ I l - l ~ = A l I l - l ~ + T ,  

100 A ( I 1 )  = A ( I 1 )  + T I  
C END OF I LOOP 

110 J J = J J + N P L  
C END OF J LOOP 

1 2 0  L E X P l = Z * L E X P l  
L E X P  = 2*LEXP 

1 3 0  N P L = N P L / 2  
C END OF L LOOP 

CC DOING FOURIER ANALYSIS .  REPLACE A BY CONJUGATE. 
I F ( I F S ) 1 4 5 * 2 , 1  

1 4 5  DO 1 5 0  I = l * N  
1 5 0  A l 2 * I )  = - A ( 2 * 1 )  

GO TO 1 
C RETURN 

2 0 0  NP=N 
MP=M 
N T = N / 4  
MT=M-2 
I F ( M T )  2 6 0 * 2 6 0 * 2 0 5  

C MAKE TABLE OF S ( J ) = S I N ( ~ * P I * J / N P ) ~ J = ~ ~ Z ~ . . . N T - ~ ~ N T - ~ ~ N T = N P / ~  

2 0 5  T H E T A = . 7 8 5 3 9 8 1 6 3 4  
C T H E T A - P I / Z * * ( L + l )  FOR L = l  

C J S T E P  = 2 * * (  M T - L + l  1 FOR L = l  

C J D I F  = 2 * * (MT-L )  FOR L = 1  

J S T F P  = NT 

J D I F  = N T / 2  

S ( J D 1 F )  = S I N ( T H E T A 1  
I F  ( M T - 2 ) 2 6 0 * 2 2 0 * 2 2 0  

THETA = THETA/2.  
J S T E P 2  = J S T E P  
J S T E P  = J D I F  
J D I F  = J D I F / 2  
S ( J D I F ) = S I N ( T H E T A )  
J C l = N T - J D I F  
S ( J C l ) = C O S ( T H E T A )  
J L A S T - N T - J S T E P 2  
IF(JLAST-JSTEP)250*230*230 

230 DO 240 J = J S T E P , J L A S T * J S T E P  
JC=NT-J  

220 DO 250 L = 2 * M T  

J D = J + J D I F  
240 S(JDl=S(J)*S(JCl)+S(JDIF)*S(JC) 
250 CONTINUE 
260 I F (  I F S ) 2 0 * 1 * 2 0  

END 

HARM 136 
HARM 137 
HARM 138 
HARM 139 
HARM 140 
HARM 141 
HARM 142 
HARM 143 
HARM 144 
HARM 145 
HARM 146 
HARM 147 
HARM 148 
HARM 149 
HARM 1 5 0  
HARM 1 5 1  
HARM 1 5 2  
HARM 1 5 3  
HARM 1 5 4  
HARM 1 5 5  
HARM 156 

HARM 1 5 8  
HARM 1 5 9  
HARM 160 
HARM 161 
HARM 162 
HARM 163 
HARM 164 
HARM 1 6 5  
HARM 166 
HARM 167 

HARM 169 
HARM 170 

HARM 157 

HARM 173 
HARM 174 
HARM 175 
HARM 176 
HARM 171  
HARM 170 
HARM 179 
HARM 1 8 0  
HARM 1 8 1  

HARM 183 
HARM 104 
HARM 1 8 5  
HARM 186 
HARM 187 
HARM 180 
HARM 189 
HARM 190 
HARM 191 
HARM 192 
HARM 193 
HARM 194 
HARM 195 
HARM 196 
HARM 197 
HARM 198 
HARM 199 
HARM 200 
HARM 201  
HARM 202 
HARM 203 
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Appendix B 

Subroutine FOURIER 

SUBROUTINE FOURIER ( A * S , M * I F S I  

C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

T H I S  ROUTINE PERFORMS AN A N A L Y S I S  OF 2 * * ~  P O I N T S  BY F I R S T  DOING 
AN A N A L Y S I S  OF 2* *M/2  COMPLEX P O I N T S  AND THEN ARRANGING THE RESULTS 

A R G U M E N T S  
1. A - REAL DATA ARRAY - OF D I M E N S I O N  2**M + 2 
2. S - S I N / C O S  TABLE - D I M E N S I O N  2 * * ( M - 3 )  
3. M - EXPONENT OF 2 - S I Z E  OF REAL ARRAY 
4. I F S  - -1 FOR F I R S T  T I M E .  -2 THERAFTER 

D I M E N S I O N  A ( l ) t S ( l )  
N = Z " s ( M - 1 )  
C A L L  HARMON(A,S,M-l,IFS*IFERR) 
MERGE 2 N-POINT A N A L Y S I S  I N T O  1 2N-POINT A N A L Y S I S  
NHALF = N / 2  
NTWO = N*2  + 4 
X = XO = COS(3.1415926536/FLOAT(N)) 
Y = YO = SIN(3.1415926536/FLOAT(NlI 
DO 1000 K 2  = 4 9 N 9 2  
K 1  = K 2  - 1 
N 2  = NTWO - K 2  
N 1  = N 2  - 1 
B K 1  = A ( K 1 1  + A 
BK2 = A ( K 2 )  - A 
B N 1  = A ( K 2 1  + A 
BN2 = A ( K 1 )  - A 
X B N l  = X * B N l  
XBN2 = X*BN2 
Y B N l  = Y * B N l  
YBNZ = Y*BN2 
A ( K 1 1  = .5 * ( B K l  + X B N l  - YBNZ)  
A ( K 2 )  = .5 * ( - B K 2  + XBN2 + Y B N I )  
A ( N 1 )  = e 5  * ( B K 1  - X B N l  + Y B N 2 )  
A ( N 2 )  = -5 * ( B K 2  + XBN2 + YBN11 
Q = X*XO - YXYO 
Y = Y*XO + X*YO 

1 0 0 0  X = Q 
C COMPLEX ELEMENT A ( N 1  

A ( 2 * N + 2 1  = 0.0 
C COMPLEX ELEMENT A ( O 1  

A ( 1 )  = . 5 * ( A ( l I + A ( 2 1 )  

A ( 2 * N + l I  = ( A ( l I  - A ( 2 1 1 * . 5  

A ( 2 1  = 0.0 
C COMPLEX ELEMENT A ( N I 2 1  
C A ( N + l )  = A ( N + l )  
C A ( N + 2 )  = A ( N + 2 1  

RETURN 
END 
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Appendix C 

Subroutine ALIASING 

SUBROUTINE A L I A S I N G  (A,S,M, DATASUM,AMPSUMv ODDEVENSsODDBOTHS, 
1 BOTHSUM, OCTAVES1 

r c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 

T H I S  PROGRAM COMPARES THE RESULTS OF THE G I V E N  SAMPLING WITH 
ARRAYS (000 HND EVEN INDEXED1 WHICH REPRESENT H A L F  THE SAMPLING DENSITY.  
I F  THE COMPARISONS ARE S I G N I F I C A N T ,  THEN A L I A S I N G  E X I S T S  FOR THE 
HALF-DENSITY SAMPLE, AND PERHAP> ALSO FOR THE COMPLETE SAMPLE. 

THE VALUES OF -0DDEVENS- AND -OCTAVES- SHOULD BE AS CLOSE TO 
ZERO AS NUMERICAL TRUNCATION AND/OR N O I S E  ALLOWS. IF THESE VALUES 
ARE GREATER THAN, SAY 1.00E-2. THEN A L I A S I N G  E X I S T S  FOR T H I S  SAMPLE 
RATE. 

A = G I V E N  REAL DATA ARRAY, OF D I M E N S I O N  2**M + 2 LOCATIONS 
S = S I N E / C O S I N E  ARRAY COMPUTED BY HARMON 
M = EXPONENT OF 2 
DATASUM - SUM OF I N I T I A L  A ( I l * * 2  FOR PARSEVALS E Q U A L I T Y  
AMPSUM - SUM OF F I N A L  A ( I j * * 2  FOR PARSEVALS E Q U A L I T Y  
ODDEVENS - ERROR BETWEEN SPECTRA OF ODD- VS. EVEN-NUMBERED P O I N T S  
ODDBOTHS - ERROR BETWEEN ODD-INDEXED VS A L L  P O I N T S  
BOTHSUM - ERROR BETWEEN SPECTRA OF EVEN-INDEXED VS A L L  P O I N T S  
OCTAVES - SUM OF OCTAVES 

c 
D I M E N S I O N  A ( l ) . S ( l l  

C 
C SET UP I N D E X  CONSTANTS 
C 

N 1 0 2 4  = 2**M 
N 5 1 2  = N 1 0 2 4 / 2  
N 2 5 6  = N 5 1 2 / 2  
N 1 0 2 5  = N 1 0 2 4  + 1 
N 1 0 2 6  = N 1 0 2 4  + 2 
N 1 0 2 8  = N 1 0 2 6  + 2 
N 1 0 3 0  = N 1 0 2 8  + 2 
N 5 1 3  = N 5 1 2  + 1 
N 5 1 4  = N 5 1 2  + 2 
N 5 1 6  = N 5 1 4  + 2 
N 5 1 8  = N 5 1 6  + 2 
N 7 7 0  = N 5 1 4  + N 2 5 6  
N 1 5 4 4  = N 1 0 3 0  + N 5 1 4  

r 
L 

C COMPUTE THE DATA SUM FOR PARSEVAALS EQUALITY 

DATASUM = 0.0 
DO 5 0  I = l r N 1 0 2 4  

5 0  DATASUM = DATASUM + A ( I I * A ( I I  
c 

C 
C A L L  H A R M O N ( A , S I M - ~ * - ~ ~ I F E R R I  

A 5 1 3  = A ( N 5 1 3 1  
A 5 1 4  = A ( N 5 1 4 1  
A 1 0 2 5  = . 5 + ( A ( l l - A ( 2 1 1  

C A 1 0 2 6  = 0.0 

C 
C SORT COMPLEX SPECTRUM I N T O  ODD AND EVEN SPECTRA 
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ODDBOTH = ABS(0DD-BOTH)  
ODDBOTHS = ODDBOTHS + ODDBOTH 
EVENBOTH = ABS(EVEN-BOTH) 
BOTHSUM = BOTHSUM + EVENBOTH 
AMPSUM = AMPSUM + BOTH + OCTAVE 
Q = C*DC - S*DS 
S = S*DC + C*DS 

AMPSUM = F L O A T ~ N 5 1 2 ~ * ~ A M P S ~ M + A 5 1 3 x A 5 1 3 + A g 1 4 x A 5 1 4 + A l O 2 5 * A l ~ 2 5 * Z ~ ~  
300 C = Q 

C 
C SORT THE SECOND H A L F  OF SPECTRUM 
C 

N 1 5 4 2  = N 1 5 4 4 - 2  
DO 500 KZ = N 5 1 6 r N 7 7 0 9 2  
K 1  = K 2 - 1  
K K 2  = N 1 5 4 2  - K 2  
K K 1  = K K 2  - 1 
AR = A ( K 1 )  
A I  = A I K 2 )  
A ( K 1 )  = A ( K K 1 )  
A ( K 2 )  = A(KK.2 )  
A ( K K 1 )  = AR 

600 A ( K K 2 )  = A I  
C F I L L  I N  CERTAIN LOCATIONS 

A ( N 5 1 3 )  = A 5 1 3  
A ( N 5 1 4 )  = A 5 1 4  
A ( N 1 0 2 5 )  = A 1 0 2 5  
A ( N 1 0 2 6 )  = 0.0 
RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

110 

100 

2 0 1  

Appendix D 

Subroutine DOUBLE 
SUBROUTINE DOUBLE ( A 9 5 9 M , N l r N 2 , N 3 )  

ROUTINE TO DO FOURIER A N A L Y S I S  OF REAL D A T A  OF S I Z E  2**M WHEN 
CORE CAN ONLY HANDLE ARRAYS OF b I Z E  2 * * ( M - 1 )  

ARGUMENT L I S T  -- 
1. A = DATA BUFFER WORKAREA - D I M E N S I O N  Z * * ( M - l l +  2 

THE EXTRA 2 LOCATIONS ARE FOR THE COMPLEX P O I N T  AT THE 
M I D P O I N T  OF THE SPECTRUM 

2. S = S I N / C D S  TABLE - S I Z E  ASSUMED TO BE Z * * ( M - 4 )  
3. M = EXPONENT OF REAL DATA ARRAY 
4. N 1  = SCRATCH TAPE WHERE INPUT DATA I S  STORED I N  FOUR RECORDS . . a  

RECORD 1 CONTAINS A ( 1 )  e-. A ( N )  
RECORD 2 CONTAINS A ( N + l )  A ( 2 N )  
RECORD 3 CONTAINS A ( 2 N + l l  . . e  A ( ? N )  
RECORD 4 CONTAINS A ( 3 N + 1 )  ..e A ( 4 N )  
WHERE N = 2 * * ( M - 2 )  

5.96. - N 2  AND N 3  ARE SCRATCH TAPES 

D I M E N S I O N  A ( l ) r S ( l ) , N T A P E ( 3 1  
N T A P E ( 2 )  = N2 
N T A P E ( 3 )  = N 3  
M 4 0 9 6  = 2 * * ( M - l )  
M 2 0 4 8  = M 4 0 9 6 / 2  
M 1 0 2 4  = M 2 0 4 0 / 2  
M 3 0 7 2  = M 2 0 4 0  + M 1 0 2 4  
M 3 0 7 3  = M 3 0 7 2  + 1 
M 2 0 4 9  = M 2 0 4 0  + 1 
~ 2 0 5 0  = ~ 2 0 4 8  + 2 
M 4 0 9 0  = M 4 0 9 6  + 2 
M I N U S  = -1 
REWIND N 1  
REWIND N 2  
REWIND N 3  

SORT DATA I N T O  ODD AND EVEN ARRAYS 

DO 100 I = 1 9 4  

READ ( N 1 )  ( A ( L ) , L = l * M Z 0 4 8 )  
DO 110 J = 1 9 M 1 0 2 4  
J1 = J + M 2 0 4 8  
J 2  = J + M 3 0 7 2  
A ( J 1 )  = A ( 2 r - J - l )  
A I J 2 )  = A ( 2 * J )  
WRITE ( N 2 )  ( A ( L ) y L = M Z 0 4 9 , M 3 0 7 2 )  
WRITE ( N 3 )  ( A ( L ) r L = M 3 0 7 3 , M 4 0 9 6 )  
REWIND N 1  
REWIND N2 
REWIND N 3  

DO FOURIER A N A L Y S I S  OF ODD AND EVEN ARRAYS SEPARATELY 

DO 2 0 0  I 1  = 2 9 3  
NT = N T A P E ( I 1 )  
I 1  = 1 
I 2  = M 1 0 2 4  
DO 2 0 1  I = 1 9 4  

READ ( N T )  ( A ( L ) 9 L = I l , I Z )  
I 1  = I 1  + M 1 0 2 4  
I 2  = I 2  + M 1 0 2 4  
REWIND NT 
C A L L  FOURIER ( A 9 S r M - l v M I N U S )  
M I N U S  = - 2  
W R I T E t N T )  ( A ( L ) r L = l . M 2 0 5 0 )  
WRITECNT)  ( A ( L ) . L = M 2 0 4 9 ~ M 4 0 9 8 )  
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200 REWIND N T  
C 
C MERGE THE EVEN AND ODD SPECTRA 
C 

c = 1.0 
s = 0. 
DC = C O S ( 3 . 1 4 1 5 9 2 6 5 3 6 / M 4 0 9 6 )  
D S  = S I N ( 3 . 1 4 1 5 9 2 6 5 3 6 / M 4 0 9 6 )  
DO 300 I 1  = 1 1 2  
READ ( N 2 )  ( A ( L ) * L = l ~ M 2 0 4 8 ) * A R N I A I N  
READ ( N 3 )  ( A ( L ) , L = M ~ O ~ ~ ~ M ~ O ~ ~ ) , A A R N , A A R N , A A I N  
DO 301 K = 1 9 M 1 0 2 4  
K 2  = 2*K 
K 1  = K 2  - 1 
AR = A ( K 1 )  
A I  = A ( K 2 )  
K K 1  = K 1  + M 2 0 4 8  
K K 2  = K 2  + M 2 0 4 8  
AAR = A ( K K 1 )  
A A I  = A ( K K 2 )  
DR = AAR*C + A A I * S  
D I  = A A I * C  - AAR*S 
A ( K 1 )  = .5*(AR+DR) 
A ( K 2 )  = . 5 * ( A I + D I )  
A I K K I )  = .5*(AR-DR) 
A ( K K 2 )  = . 5 * ( - A I + D I )  
Q = C*DC - S*DS 
S = S*DC + C*DS 

GO TO ( 3 2 1 9 3 2 2 ) r I I  

A ( M 2 0 5 0 )  = - 5  * ( - A I N  + C * ( A A I N - A A R N ) )  
GO TO 3 2 3  

322 A ( M 2 0 4 9 )  = ARN + A A I N  
A ( M 2 0 5 0 )  = A I N  - AARN 

323 CONTINUE 
WRITE ( N 1 )  ( A ( L ) r L = l * M 2 0 4 8 )  
M I  = M 2 0 4 8 + 3  
MM = M 4 0 9 6  + M 2 0 4 8  + 2 
M2 = MM/2 - 2 
DO 302 K = M l i M 2 9 2  
K 1  = MM-K 
AR = A ( K 1 )  
A I  = A ( K 1 + 1 )  
A ( K 1 )  = A ( K )  
A ( K 1 + 1 )  = A ( K + I )  
A ( K )  = AR 

301 C = Q 

3 2 1  A ( M 2 0 4 9 )  = .5 * ( A R N  - C * ( A A R N + A A I N ) )  

302 A ( K + l )  = A I  
300 WRITE ( N 1 )  ( A ( L ) . L = M 2 0 4 9 9 M 4 0 9 6 )  

REWIND N 1  
REWIND NZ 
REWIND N 3  

r 
L 

C SORT SPECTRAL ELEMENTS I N T O  PROPER ORDER 
C 

READ ( N 1 )  
READ ( N 1 )  
W R I T E (  N 2  ) 
READ ( N 1 )  
W R I T E ( N 3 )  
READ ( N 1 )  
W R I T E (  N 3  1 
REWIND N l  
REWIND NZ 
REWIND N 3  
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C 
C 
C 

REWIND N1 
REWIND N2 
REWIND N3 
RETURN 

COMPLEX AMPLITUDES ARE ON SCRATCH TAPE N1 

END 
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Appendix E 

Subroutine HANNING 

SUBROUTINE H A N N I N G ( A ~ N )  
DIMENSION A l l )  
N N = N - l  
X 1  = A ( 1 )  
A ( 1 1  = X 1  + A ( 2 1  
DO 100 I = 29" 
X 2  = A ( I 1  
A I 1 1  = . 5 *  1x1 + A ( I + l I  I + X 2  

100 X I  = x 2  
A ( N )  = A I N )  + X 1  
RETURN 
END 

39 





I 

Appendix F 

Subroutine HAMMING 

SUBROUTINE HAMMING(A9N) 
DIMENSION A(11 
N N = N - 1  
X1 = A l l )  
A(1) = 1.08*X1 + .92*A(21 
DO 100 I = 29" 

X 2  = A(I1 
A(1) = -46 * ( X 1  + A(I+l) I + 1.08 * X 2  
A ( N )  = e 9 2  i k  X1 + 1.08*A(N) 

100 x 1  = x2 

RETURN 
END 
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Appendix G 

Subroutine COVAR 

SUBROUTINE COVAR (X, Y, M, S) 

X =REAL ARRAY OF DIMENSION 2**M 
Y =REAL ARRAY OF DIMENSION 2**M 
M =EXPONENT, 2**M =NUMBER OF POINTS 
S =SINE/COSINE ARRAY USED BY HARMON 

C 
C 
C 
C 
c 
C 
C 
c CROSS POWER SPECTRUM IS RETURNED I N  X 
C 

CROSS-VOVARIANCE I S  RETURNED I N  Y 

DIMENSION X(1). Y ( l ) ,  S(1) 
N =2**M 
N l = N + l  
N2 =2N 
DO 50 I=Nl, N 2  
x ( 1 )  =o 

50 Y ( \ l  = O  
M = M + l  
CALL POWER (X, Y, M, S) 
DO 100 I =1, N2 

100 Y (1) = x ( I )  
C A L L  HARMON (Y, S, M-1, 2, IFERR) 
RETURN 
END 
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Appendix H 

Subroutine POWER 

SUBROUTINE POWER(X,Y*M,S) 
DIMENSION X(l),Y(l)*S(l) 
N = 2*+M 
C A L L  FOURIER(X959M) 
C A L L  FOURIER(Y.S,M) 
DO 100 I = lrN92 
I1 = I+1 
TEMP = X(I)*Y(I) + X(Il)*Y(Il) 
X(I1) = X(I)*Y(Il) - XIIl)*Y(I) 
RETURN 
END 

100 X(1) = TEMP 
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